Optimization of the Architecture of Feed-forward Neural Networks with Hidden Layers by Unit Elimination

نویسنده

  • Anthony N. Burkitt
چکیده

A method for red ucing t he number of uni ts in t he hidden layers of a feed-for war d neur al network is pr esented . Starting wit h a net that is oversize, t he redundan t unit s in t he hidden layer are elimina ted by introducing an addit ional cost fun ct ion on a set of auxiliary linear response uni ts . T he extra cost funct ion enables t he auxiliary units to fuse together the redundant uni t s on the original network, and t he aux iliary units serve only as an interm edi at e const ruct t hat vanishes when t he met hod converges. Nume rical tests on t he P arity and Symmetry problems illustrate t he usefu lness of t his method in pr actice.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of sound classification by neural networks in the recognition of human hearing

In this paper, we focus on two basic issues: (a) the classification of sound by neural networks based on frequency and sound intensity parameters (b) evaluating the health of different human ears as compared to of those a healthy person. Sound classification by a specific feed forward neural network with two inputs as frequency and sound intensity and two hidden layers is proposed. This process...

متن کامل

STRUCTURAL DAMAGE DETECTION BY MODEL UPDATING METHOD BASED ON CASCADE FEED-FORWARD NEURAL NETWORK AS AN EFFICIENT APPROXIMATION MECHANISM

Vibration based techniques of structural damage detection using model updating method, are computationally expensive for large-scale structures. In this study, after locating precisely the eventual damage of a structure using modal strain energy based index (MSEBI), To efficiently reduce the computational cost of model updating during the optimization process of damage severity detection, the M...

متن کامل

بهینه سازی فرآیند با چند سطح پاسخ به وسیله شبکه‌های عصبی برمبنای مفهوم مطلوبیت

In this paper, a method is proposed for Multiple Response Optimization (MRO) by neural networks and uses desirability of each response for forecasting. The used neural network is a feed forward back propagation one with two hidden layers. The numbers of neurons in the hidden layers are determined using MSE criterion for training and test data. The numbers on neurons of the first layer last laye...

متن کامل

Optimization of Oleuropein Extraction from Olive Leaves using Artificial Neural Network

In this work, the artificial neural networks (ANN) technology was applied to the simulation of oleuropein extraction process. For this technology, a 3-layer network structure is applied, and the operation factors such as  amount  of  flow  intensity  ratio,  temperature,  residence  time,  and  pH  are  used  as  input  variables  of  the network,  whereas  the  extraction  yield  is  considere...

متن کامل

Evaluation of effects of operating parameters on combustible material recovery in coking coal flotation process using artificial neural networks

In this research work, the effects of flotation parameters on coking coal flotation combustible material recovery (CMR) were studied by the artificial neural networks (ANNs) method. The input parameters of the network were the pulp solid weight content, pH, collector dosage, frother dosage, conditioning time, flotation retention time, feed ash content, and rotor rotation speed. In order to sele...

متن کامل

Prediction of breeding values for the milk production trait in Iranian Holstein cows applying artificial neural networks

The artificial neural networks, the learning algorithms and mathematical models mimicking the information processing ability of human brain can be used non-linear and complex data. The aim of this study was to predict the breeding values for milk production trait in Iranian Holstein cows applying artificial neural networks. Data on 35167 Iranian Holstein cows recorded between 1998 to 2009 were ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Complex Systems

دوره 5  شماره 

صفحات  -

تاریخ انتشار 1991